Layered X-Ray Motion Estimation Using Primal-Dual Optimization
نویسندگان
چکیده
Layered motion estimation (LME) in X-ray fluoroscopy is a challenging, ill-posed and non-convex problem due to transparency effects and the way the image is defined. Minimizing an energy formulation of layered motion estimation is computationally expensive. For clinical usability of this approach, we propose to use primal-dual optimization parallelized using a graphical processing unit (GPU) to reduce the overall run-time of this algorithm. Experimentally this method is able to substantially reduce target registration error by 70% on manually annotated landmarks on five distinct image sequences compared to the static baseline, similar to prior work on this domain. However, the overall runtime of our method on a conventional GPU is less than 3.3 seconds compared to several minutes for the state of the art. Considering typical frame-rates of X-ray fluoroscopy devices, this runtime makes the application of layered motion estimation feasible for many clinical workflows.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA rst-order primal-dual algorithm for convex problems with applications to imaging
In this paper we study a rst-order primal-dual algorithm for convex optimization problems with known saddle-point structure. We prove convergence to a saddle-point with rate O(1/N) in nite dimensions, which is optimal for the complete class of non-smooth problems we are considering in this paper. We further show accelerations of the proposed algorithm to yield optimal rates on easier problems. ...
متن کاملConvex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm.
The primal-dual optimization algorithm developed in Chambolle and Pock (CP) (2011 J. Math. Imag. Vis. 40 1-26) is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملMotion Compensated Dynamic MRI Reconstruction with Local Affine Optical Flow Estimation
This paper proposes a novel framework to reconstruct the dynamic magnetic resonance images (DMRI) with motion compensation (MC). Due to the inherent motion effects during DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been studied under a compressed sensing (CS) scheme. In this paper, by embedding the intensity-based optical flow (OF) constraint into t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017